您现在的位置是:网站首页> 编程资料编程资料

React Diff算法不采用Vue的双端对比原因详解_vue.js_

2023-05-24 393人已围观

简介 React Diff算法不采用Vue的双端对比原因详解_vue.js_

前言

都说“双端对比算法”,那么双端对比算法,到底是怎么样的呢?跟 React 中的 Diff 算法又有什么不同呢?

要了解这些,我们先了解 React 中的 Diff 算法,然后再了解 Vue3 中的 Diff 算法,最后讲一下 Vue2 中的 Diff 算法,才能去比较一下他们的区别。

最后讲一下为什么 Vue 中不需要使用 Fiber 架构。

React 官方的解析

其实为什么 React 不采用 Vue 的双端对比算法,React 官方已经在源码的注释里已经说明了,我们来看一下 React 官方是怎么说的。

function reconcileChildrenArray( returnFiber: Fiber, currentFirstChild: Fiber | null, newChildren: Array<*>, expirationTime: ExpirationTime, ): Fiber | null { // This algorithm can't optimize by searching from boths ends since we // don't have backpointers on fibers. I'm trying to see how far we can get // with that model. If it ends up not being worth the tradeoffs, we can // add it later. // Even with a two ended optimization, we'd want to optimize for the case // where there are few changes and brute force the comparison instead of // going for the Map. It'd like to explore hitting that path first in // forward-only mode and only go for the Map once we notice that we need // lots of look ahead. This doesn't handle reversal as well as two ended // search but that's unusual. Besides, for the two ended optimization to // work on Iterables, we'd need to copy the whole set. // In this first iteration, we'll just live with hitting the bad case // (adding everything to a Map) in for every insert/move. // If you change this code, also update reconcileChildrenIterator() which // uses the same algorithm. } 

大概的意思就是说:

React 不能通过双端对比进行 Diff 算法优化是因为目前 Fiber 上没有设置反向链表,而且想知道就目前这种方案能持续多久,如果目前这种模式不理想的话,那么也可以增加双端对比算法。

即使是双端对比算法,我们也要对这种情况进行优化,我们应该使用 Map 这种数据结构方案去替代原来那种几乎没有什么变化也进行暴力比较的方案。它第一次搜索循环是通过 forward-only 这种模式(就是只从左向右查找),(第一次循环可能还没有结束,还有节点没有比对的时候)如果还要继续向前循环查找那么就要通过 Map 这种数据类型了。(就目前这个单向链表的数据结构,如果采用)双端对比查找算法比较难控制它反向查找的,但它确实是一种成功的算法。此外,双端对比算法的实现也在我们的工作迭代当中。

第一次迭代,我们就先将就使用这种不好的方案吧,每次新增/移动都要添加所有的数据到一个 Map 的数据类型对象中。

“we'd need to copy the whole set”,这一句,每一个单词都懂,但就是不知道他想说什么,所以就不翻译了,有知道的大神吗?

本人水平有限,错漏难免,如有错漏,恳请各位斧正。

React 的官方虽然解析了,但我们想要彻底理解到底为什么,还是要去详细了解 React 的 Diff 算法是怎么样的。在了解 React Diff 算法之前,我们首先要了解什么是 Fiber,为什么 React 中要使用 Fiber?

Fiber 的结构

在 React15 以前 React 的组件更新创建虚拟 DOM 和 Diff 的过程是不可中断,如果需要更新组件树层级非常深的话,在 Diff 的过程会非常占用浏览器的线程,而我们都知道浏览器执行JavaScript 的线程和渲染真实 DOM 的线程是互斥的,也就是同一时间内,浏览器要么在执行 JavaScript 的代码运算,要么在渲染页面,如果 JavaScript 的代码运行时间过长则会造成页面卡顿。 基于以上原因 React 团队在 React16 之后就改写了整个架构,将原来数组结构的虚拟DOM,改成叫 Fiber 的一种数据结构,基于这种 Fiber 的数据结构可以实现由原来不可中断的更新过程变成异步的可中断的更新。

Fiber 的数据结构主要长成以下的样子,主要通过 Fiber 的一些属性去保存组件相关的信息。

function FiberNode( tag: WorkTag, pendingProps: mixed, key: null | string, mode: TypeOfMode, ) { // 作为静态数据结构的属性 this.tag = tag; this.key = key; this.elementType = null; this.type = null; this.stateNode = null; // 用于连接其他Fiber节点形成Fiber树 this.return = null; this.child = null; this.sibling = null; this.index = 0; this.ref = null; // 作为动态的工作单元的属性 this.pendingProps = pendingProps; this.memoizedProps = null; this.updateQueue = null; this.memoizedState = null; this.dependencies = null; this.mode = mode; this.effectTag = NoEffect; this.nextEffect = null; this.firstEffect = null; this.lastEffect = null; // 调度优先级相关 this.lanes = NoLanes; this.childLanes = NoLanes; // 指向该fiber在另一次更新时对应的fiber this.alternate = null; } 

Fiber 主要靠以下属性连成一棵树结构的数据的,也就是 Fiber 链表。

// 指向父级Fiber节点 this.return = null; // 指向子Fiber节点 this.child = null; // 指向右边第一个兄弟Fiber节点 this.sibling = null; 

举个例子,如下的组件结构:

function App() { return ( 
i am Coboy
) }

对应的 Fiber 链表结构:

那么以上的 Fiber 链表的数据结构有什么特点,就是任何一个位置的 Fiber 节点,都可以非常容易知道它的父 Fiber, 第一个子元素的 Fiber,和它的兄弟节点 Fiber。却不容易知道它前一个 Fiber 节点是谁,这就是 React 中单向链表 Fiber 节点的特点。也正是因为这些即便在协调的过程被中断了,再恢复协调的时候,依然知道当前的 父节点和孩子节点等信息。

那么 React 是将对应组件怎么生成一个 Fiber 链表数据的呢?

Fiber 链表的生成

上面的组件在经过 JSX 的编译之后,初始化的时候会生成成一个类似于 React 15 或者 Vue 那种虚拟 DOM 的数据结构。然后创建一个叫 fiberRoot 的 Fiber 节点,然后开始从 fiberRoot 这个根 Fiber 开始进行协调,生成一棵 Fiber 树,这个棵树被称为:workInProgress Fiber 树 ,意思是正在工作的 Fiber 树,接下来我们详细了解一下具体是怎么生成一棵 Fiber 树的。要先了解 Fiber 树的生成原理才更好去理解 Fiber 树 diff 的过程。

以下是一段简单版的 Fiber 链表生成的代码片段。 这个协调子节点的函数接收两个参数,returnFiber 是父 Fiber,children 是这个节点的子元素的虚拟 DOM数据。

// 这个协调子节点的函数接收两个参数,returnFiber 是父 Fiber,children 是这个节点的子元素的虚拟 DOM数据。 export function reconcileChildren(returnFiber, children) { // 如果是字符串或者数字则不创建 Fiber if(isStringOrNumber(children)) { return } const newChildren = isArray(children) ? children : [children] // 上一轮的 fiber 节点 let previousNewFiber = null; // 初次渲染(false)还是更新(true) let shouldTrackSideEffects = !!returnFiber.alternate // 老 Fiber 节点 let oldFiber = returnFiber.alternate && returnFiber.alternate.child let nextOldFiber = null // 上一次协调返回的位置 let lastPlacedIndex = 0; // 记录每个 fiber 节点的位置 let newIdx = 0; // 如果不存在老 Fiber 则是初始化的过程,进行 Fiber 链表的创建 if(!oldFiber) { for (; newIdx < newChildren.length; newIdx++) { // 获取节点元素内容 const newChild = newChildren[newIdx] // 如果节点为 null 则不需要创建 fiber 节点 if(newChild === null) { continue } // 创建新 fiber 的时候记录了关键的父 fiber 等重要信息 const newFiber = createFiber(newChild, returnFiber) // 记录当前每一个 fiber 的位置 lastPlacedIndex = placeChild( newFiber, lastPlacedIndex, newIdx, shouldTrackSideEffects // 初次渲染(false)还是更新(true) ) // 当上一轮的 fiber 节点为 null 的时候,这一轮的 fiber 就是头节点 if(previousNewFiber === null) { // 父 fiber 的 child 就是第一个节点 returnFiber.child = newFiber } else { // 如果不是第一个节点,那么就是兄弟节点 // 上一轮 fiber 的兄弟节点是这一轮的 fiber 节点 previousNewFiber.sibling = newFiber; } // 记录上一轮的 fiber,既是这一轮的 fiber 便是下一轮的上一轮 fiber previousNewFiber = newFiber } return } } 

构建完的 workInProgress Fiber树 会在 commit阶段 渲染到页面。

在组件状态数据发生变更的时候,会根据最新的状态数据先会生成新的虚拟DOM,再去构建一棵新的 workInProgress Fiber 树 ,而在重新协调构建新的 Fiber 树的过程也就是 React Diff 发生的地方。接下来,我们就看看 React Diff 算法是怎么样的。

React 的 Diff 算法

深度优先,有子节点,就遍历子节点,没有子节点,就找兄弟节点,没有兄弟节点,就找叔叔节点,叔叔节点也没有的话,就继续往上找,它爷爷的兄弟,如果一直没找到,就代表所有的更新任务都更新完毕了。

重点是在更新自己的同时需要去协调子节点,也就是传说中进行 Diff 的地方。

进入协调的时候它自己就是父 Fiber,它的子节点在协调之前,是刚刚通过更新的状态数据生成的最新的虚拟DOM数据,是个数组结构的元素数据。

那么要进行更新,就肯定是以为最新的节点数据为准了,又因为最新的节点数据是一个数组,所以可以进行循环对比每一个节点,很明显这个循环是从左向右进行查找比对的。

第一轮,常见情况的比对

那么第一个节点的老 Fiber 怎么拿到呢?可以通过 父 Fiber 的 child 属性拿到,这样第一个节点的老 Fiber 就拿到了,那么第二节点的老 Fiber,很明显可以通过第一个节点的老 Fiber 节点的 sibling 属性拿到,后面的以此类推。

怎么比对呢?

在循环的新节点虚拟DOM数据的时候,拿到新节点虚拟DOM信息,然后就去和老 Fiber 节点进行比对,如果两个节点相同则创建一个新的 Fiber 节点并复用一些老 Fiber 节点的信息,比如真实 DOM,并给这个新的 Fiber 节点打上一个 Update 的标记,代表这个节点需要更新即可。

接着去更新协调位置信息。

在循环的最后进行 Fiber 链表的处理:

如果是头节点,则把新 Fiber 设置为父 Fiber 的 child 属性的值; 如果不是头节点,则把新 Fiber 设置为上一轮循环的创建的 Fiber 节点的 sibing 属性的值; 更新上一轮 Fiber 变量的值,就是把这一轮的 Fiber 设置成下一轮的 Fiber; 更新比对的老 Fiber 的值。

如果新节点都能找到能复用的节点,则判断是否还存在老节点,有则删除。

第二轮,不常见的情况的比对

如果经过第一轮比对,新节点还存在未比对的,则继续循环查找。

先将剩下未比对的老 Fiber 节点全部处理成一个 老 Fiber 的 key 或老 Fiber 的 index 为 key,Fiber 节点为 value 的 Map 中,这样就可以,以 O(1) 复杂度,通过新 Fiber 的 key 去 Map 对象中查找匹配的 Fiber,找到了,则删除 Map 对象中的老 Fiber 数据,然后复用匹配到的 Fiber 数据。

接下来,不管有没有匹配到都进行位置协调,记录最新的位置信息,新增的 Fiber 因为没有存在老 Fiber 而会被打上 Placement 的标记,在将来提交的阶段将会被进行新增操作。这个过程跟第一轮最后的处理是一样的。

在循环的最后进行 Fiber 链表的处理:

如果是头节点,则把新 Fiber 设置为父 Fiber 的 child 属性的值; 如果不是头节点,则把新 Fiber 设置为上一轮循环的创建的 Fiber 节点的 sibing 属性的值; 更新上一轮 Fiber 变量的值,就是把这一轮的 Fiber 设置成下一轮的 Fiber; 更新比对的老 Fiber 的值。

重点如何协调更新位置信息

如果是初始渲染,那么协调位置就只是记录当前元素下标的位置到 Fiber 节点上。如果是更新阶段,就先判断有没有老 Fiber 节点,如果没有老 Fiber 节点,则说明该节点需要创建,就给当前新的 Fiber 节点打上一个 Placement 的标记,如果有老 Fiber 节点,则判断老 Fiber 节点的位置是否比上一次协调的返回的位置小,如果是,则说明该节点需要移动,给新 Fiber 节点打上一个 Placement 的标记,并继续返回上一次协调返回的位置;如果老 Fiber 节点的位置大或者等于上一次协调返回的位置,则说明该节点不需要进行位置移动操作,就返回老 Fiber 的位置即可。

这里需要说明的一点,为什么移动和新增节点都是 Placement 的标记呢?

因为我们是在协调一个子节点列表,所以不管是新增还是移动都是属于位置是需要发生变化的,所以新增和移动都是同一种操作情况。

小结

总个来说,React Diff 算法分以下几个步骤:

  • 第一轮,从左向右新老节点进行比对查找能复用的旧节点,如果有新老节点比对不成功的,则停止这一轮的比对,并记录了停止的位置。
  • 如果第一轮比对,能把所有的新节点都比对完毕,则删除旧节点还没进行比对的节点。
  • 如果第一轮的比对,没能将所有的新节点都比对完毕,则继续从第一轮比对停止的位置继续开始循环新节点,拿每一个新节点去老节点里面进行查找,有匹

-六神源码网