您现在的位置是:网站首页> 编程资料编程资料
在html5的Canvas上绘制椭圆的几种方法总结html5-Canvas可以在web中绘制各种图形HTML5 Canvas绘制超级漂亮的发光Loading动画HTML5在canvas中绘制复杂形状附效果截图HTML5 canvas绘制的玫瑰花效果html5使用canvas绘制一张图片html5使用canvas绘制太阳系效果
2021-09-01
1037人已围观
简介 HTML5中的Canvas并没有直接提供绘制椭圆的方法,下面是对几种绘制方法的总结。各种方法各有优缺,视情况选用。各方法的参数相同,感兴趣的朋友可以参考下
概述
HTML5中的Canvas并没有直接提供绘制椭圆的方法,下面是对几种绘制方法的总结。各种方法各有优缺,视情况选用。各方法的参数相同:
context为Canvas的2D绘图环境对象,
x为椭圆中心横坐标,
y为椭圆中心纵坐标,
a为椭圆横半轴长,
b为椭圆纵半轴长。
参数方程法
该方法利用椭圆的参数方程来绘制椭圆
//-----------用参数方程绘制椭圆---------------------
//函数的参数x,y为椭圆中心;a,b分别为椭圆横半轴、
//纵半轴长度,不可同时为0
//该方法的缺点是,当linWidth较宽,椭圆较扁时
//椭圆内部长轴端较为尖锐,不平滑,效率较低
function ParamEllipse(context, x, y, a, b)
{
//max是等于1除以长轴值a和b中的较大者
//i每次循环增加1/max,表示度数的增加
//这样可以使得每次循环所绘制的路径(弧线)接近1像素
var step = (a > b) ? 1 / a : 1 / b;
context.beginPath();
context.moveTo(x + a, y); //从椭圆的左端点开始绘制
for (var i = 0; i < 2 * Math.PI; i += step)
{
//参数方程为x = a * cos(i), y = b * sin(i),
//参数为i,表示度数(弧度)
context.lineTo(x + a * Math.cos(i), y + b * Math.sin(i));
}
context.closePath();
context.stroke();
};
均匀压缩法
这种方法利用了数学中的均匀压缩原理将圆进行均匀压缩为椭圆,理论上为能够得到标准的椭圆.下面的代码会出现线宽不一致的问题,解决办法看5楼simonleung的评论。
//------------均匀压缩法绘制椭圆--------------------
//其方法是用arc方法绘制圆,结合scale进行
//横轴或纵轴方向缩放(均匀压缩)
//这种方法绘制的椭圆的边离长轴端越近越粗,长轴端点的线宽是正常值
//边离短轴越近、椭圆越扁越细,甚至产生间断,这是scale导致的结果
//这种缺点某些时候是优点,比如在表现环的立体效果(行星光环)时
//对于参数a或b为0的情况,这种方法不适用
function EvenCompEllipse(context, x, y, a, b)
{
context.save();
//选择a、b中的较大者作为arc方法的半径参数
var r = (a > b) ? a : b;
var ratioX = a / r; //横轴缩放比率
var ratioY = b / r; //纵轴缩放比率
context.scale(ratioX, ratioY); //进行缩放(均匀压缩)
context.beginPath();
//从椭圆的左端点开始逆时针绘制
context.moveTo((x + a) / ratioX, y / ratioY);
context.arc(x / ratioX, y / ratioY, r, 0, 2 * Math.PI);
context.closePath();
context.stroke();
context.restore();
};
三次贝塞尔曲线法一
三次贝塞尔曲线绘制椭圆在实际绘制时是一种近似,在理论上也是一种近似。 但因为其效率较高,在计算机矢量图形学中,常用于绘制椭圆,但是具体的理论我不是很清楚。 近似程度在于两个控制点位置的选取。这种方法的控制点位置是我自己试验得出,精度还可以.
//---------使用三次贝塞尔曲线模拟椭圆1---------------------
//此方法也会产生当lineWidth较宽,椭圆较扁时,
//长轴端较尖锐,不平滑的现象
function BezierEllipse1(context, x, y, a, b)
{
//关键是bezierCurveTo中两个控制点的设置
//0.5和0.6是两个关键系数(在本函数中为试验而得)
var ox = 0.5 * a,
oy = 0.6 * b;
context.save();
context.translate(x, y);
context.beginPath();
//从椭圆纵轴下端开始逆时针方向绘制
context.moveTo(0, b);
context.bezierCurveTo(ox, b, a, oy, a, 0);
context.bezierCurveTo(a, -oy, ox, -b, 0, -b);
context.bezierCurveTo(-ox, -b, -a, -oy, -a, 0);
context.bezierCurveTo(-a, oy, -ox, b, 0, b);
context.closePath();
context.stroke();
context.restore();
};
三次贝塞尔曲线法二
这种方法是从StackOverFlow中一个帖子的回复中改变而来,精度较高,也是通常用来绘制椭圆的方法.
//---------使用三次贝塞尔曲线模拟椭圆2---------------------
//此方法也会产生当lineWidth较宽,椭圆较扁时
//,长轴端较尖锐,不平滑的现象
//这种方法比前一个贝塞尔方法精确度高,但效率稍差
function BezierEllipse2(ctx, x, y, a, b)
{
var k = .5522848,
ox = a * k, // 水平控制点偏移量
oy = b * k; // 垂直控制点偏移量
ctx.beginPath();
//从椭圆的左端点开始顺时针绘制四条三次贝塞尔曲线
ctx.moveTo(x - a, y);
ctx.bezierCurveTo(x - a, y - oy, x - ox, y - b, x, y - b);
ctx.bezierCurveTo(x + ox, y - b, x + a, y - oy, x + a, y);
ctx.bezierCurveTo(x + a, y + oy, x + ox, y + b, x, y + b);
ctx.bezierCurveTo(x - ox, y + b, x - a, y + oy, x - a, y);
ctx.closePath();
ctx.stroke();
};
光栅法
这种方法可以根据Canvas能够操作像素的特点,利用图形学中的基本算法来绘制椭圆。 例如中点画椭圆算法等。
其中一个例子是园友“豆豆狗”的一篇博文“HTML5 Canvas 提高班(一) —— 光栅图形学(1)中点画圆算法”。这种方法由于比较“原始”,灵活性大,效率高,精度高,但要想实现一个有使用价值的绘制椭圆的函数,比较复杂。比如,要当线宽改变时,算法就复杂一些。虽然是画圆的算法,但画椭圆的算法与之类似,可以参考下。
Demo
下面是除光栅法之外,几个绘制椭圆函数的演示,演示代码如下:
注意,要成功运行代码,需要支持HTML5的Canvas的浏览器。
第一次写博客,弄了一整天,真不容易啊!博客园的暗色皮肤模板对插入的代码显示效果不好。为了弄代码格式,我可是煞费苦心啊!
HTML5中的Canvas并没有直接提供绘制椭圆的方法,下面是对几种绘制方法的总结。各种方法各有优缺,视情况选用。各方法的参数相同:
context为Canvas的2D绘图环境对象,
x为椭圆中心横坐标,
y为椭圆中心纵坐标,
a为椭圆横半轴长,
b为椭圆纵半轴长。
参数方程法
该方法利用椭圆的参数方程来绘制椭圆
复制代码
代码如下://-----------用参数方程绘制椭圆---------------------
//函数的参数x,y为椭圆中心;a,b分别为椭圆横半轴、
//纵半轴长度,不可同时为0
//该方法的缺点是,当linWidth较宽,椭圆较扁时
//椭圆内部长轴端较为尖锐,不平滑,效率较低
function ParamEllipse(context, x, y, a, b)
{
//max是等于1除以长轴值a和b中的较大者
//i每次循环增加1/max,表示度数的增加
//这样可以使得每次循环所绘制的路径(弧线)接近1像素
var step = (a > b) ? 1 / a : 1 / b;
context.beginPath();
context.moveTo(x + a, y); //从椭圆的左端点开始绘制
for (var i = 0; i < 2 * Math.PI; i += step)
{
//参数方程为x = a * cos(i), y = b * sin(i),
//参数为i,表示度数(弧度)
context.lineTo(x + a * Math.cos(i), y + b * Math.sin(i));
}
context.closePath();
context.stroke();
};
均匀压缩法
这种方法利用了数学中的均匀压缩原理将圆进行均匀压缩为椭圆,理论上为能够得到标准的椭圆.下面的代码会出现线宽不一致的问题,解决办法看5楼simonleung的评论。
复制代码
代码如下://------------均匀压缩法绘制椭圆--------------------
//其方法是用arc方法绘制圆,结合scale进行
//横轴或纵轴方向缩放(均匀压缩)
//这种方法绘制的椭圆的边离长轴端越近越粗,长轴端点的线宽是正常值
//边离短轴越近、椭圆越扁越细,甚至产生间断,这是scale导致的结果
//这种缺点某些时候是优点,比如在表现环的立体效果(行星光环)时
//对于参数a或b为0的情况,这种方法不适用
function EvenCompEllipse(context, x, y, a, b)
{
context.save();
//选择a、b中的较大者作为arc方法的半径参数
var r = (a > b) ? a : b;
var ratioX = a / r; //横轴缩放比率
var ratioY = b / r; //纵轴缩放比率
context.scale(ratioX, ratioY); //进行缩放(均匀压缩)
context.beginPath();
//从椭圆的左端点开始逆时针绘制
context.moveTo((x + a) / ratioX, y / ratioY);
context.arc(x / ratioX, y / ratioY, r, 0, 2 * Math.PI);
context.closePath();
context.stroke();
context.restore();
};
三次贝塞尔曲线法一
三次贝塞尔曲线绘制椭圆在实际绘制时是一种近似,在理论上也是一种近似。 但因为其效率较高,在计算机矢量图形学中,常用于绘制椭圆,但是具体的理论我不是很清楚。 近似程度在于两个控制点位置的选取。这种方法的控制点位置是我自己试验得出,精度还可以.
复制代码
代码如下://---------使用三次贝塞尔曲线模拟椭圆1---------------------
//此方法也会产生当lineWidth较宽,椭圆较扁时,
//长轴端较尖锐,不平滑的现象
function BezierEllipse1(context, x, y, a, b)
{
//关键是bezierCurveTo中两个控制点的设置
//0.5和0.6是两个关键系数(在本函数中为试验而得)
var ox = 0.5 * a,
oy = 0.6 * b;
context.save();
context.translate(x, y);
context.beginPath();
//从椭圆纵轴下端开始逆时针方向绘制
context.moveTo(0, b);
context.bezierCurveTo(ox, b, a, oy, a, 0);
context.bezierCurveTo(a, -oy, ox, -b, 0, -b);
context.bezierCurveTo(-ox, -b, -a, -oy, -a, 0);
context.bezierCurveTo(-a, oy, -ox, b, 0, b);
context.closePath();
context.stroke();
context.restore();
};
三次贝塞尔曲线法二
这种方法是从StackOverFlow中一个帖子的回复中改变而来,精度较高,也是通常用来绘制椭圆的方法.
复制代码
代码如下://---------使用三次贝塞尔曲线模拟椭圆2---------------------
//此方法也会产生当lineWidth较宽,椭圆较扁时
//,长轴端较尖锐,不平滑的现象
//这种方法比前一个贝塞尔方法精确度高,但效率稍差
function BezierEllipse2(ctx, x, y, a, b)
{
var k = .5522848,
ox = a * k, // 水平控制点偏移量
oy = b * k; // 垂直控制点偏移量
ctx.beginPath();
//从椭圆的左端点开始顺时针绘制四条三次贝塞尔曲线
ctx.moveTo(x - a, y);
ctx.bezierCurveTo(x - a, y - oy, x - ox, y - b, x, y - b);
ctx.bezierCurveTo(x + ox, y - b, x + a, y - oy, x + a, y);
ctx.bezierCurveTo(x + a, y + oy, x + ox, y + b, x, y + b);
ctx.bezierCurveTo(x - ox, y + b, x - a, y + oy, x - a, y);
ctx.closePath();
ctx.stroke();
};
光栅法
这种方法可以根据Canvas能够操作像素的特点,利用图形学中的基本算法来绘制椭圆。 例如中点画椭圆算法等。
其中一个例子是园友“豆豆狗”的一篇博文“HTML5 Canvas 提高班(一) —— 光栅图形学(1)中点画圆算法”。这种方法由于比较“原始”,灵活性大,效率高,精度高,但要想实现一个有使用价值的绘制椭圆的函数,比较复杂。比如,要当线宽改变时,算法就复杂一些。虽然是画圆的算法,但画椭圆的算法与之类似,可以参考下。
Demo
下面是除光栅法之外,几个绘制椭圆函数的演示,演示代码如下:
复制代码
代码如下:注意,要成功运行代码,需要支持HTML5的Canvas的浏览器。
第一次写博客,弄了一整天,真不容易啊!博客园的暗色皮肤模板对插入的代码显示效果不好。为了弄代码格式,我可是煞费苦心啊!
相关内容
- html5构建触屏网站之touch事件介绍html5 touch事件实现触屏页面上下滑动(二)html5 touch事件实现触屏页面上下滑动(一)html5 touch事件实现页面上下滑动效果【附代码】
- HTML5之SVG 2D入门8—文档结构及相关元素总结HTML5的文档结构和新增标签完全解析HTML5文档结构标签如何在Dreamweaver cs6 中设置默认文档格式为html5html5 跨文档消息传输示例探讨HTML5 与 XHTML2详解HTML编程的标记与文档结构在HTML文档中嵌入CSS的三种常用方式html文档中的 ol 元素的序号数字极限探讨HTML文档类型详解 推荐CSS入门:XHTML文档结构树
- HTML5之SVG 2D入门3—文本与图像及渲染文本介绍HTML5 绘制图像(上)之:关于canvas元素引领下一代web页面的问题HTML5组件Canvas实现图像灰度化(步骤+实例效果)Html5实现如何在两个div元素之间拖放图像HTML5 用动画的表现形式装载图像
- HTML5之SVG 2D入门2—图形绘制(基本形状)介绍及使用HTML5有哪些新特征JavaScript实用绘制和动画SVG描边路径插件segment源码手把手教你用AI绘制漂亮的svg圣诞图标HTML5+SVG实现的线性图表特效源码 可绘制图表区域颜色HTML5新特性之用SVG绘制微信logo
- HTML5之SVG 2D入门1—SVG(可缩放矢量图形)概述解决HTML5手机端页面缩放的问题HTML5实现可缩放时钟代码可使任何HTML元素动态缩放适合父元素的js插件scalable.jsHtml5之svg可缩放矢量图形_动力节点Java学院整理HTML5全屏响应式缩放切换幻灯片代码用HTML5实现鼠标滚轮事件放大缩小图片的功能HTML5基于SVG实现可拖拽和缩放的世界地图效果源码HTML5添加禁止缩放功能
- 利用html5 canvas破解简单验证码及getImageData接口应用用canvas显示验证码的实现canvas基础之图形验证码的示例canvas实现滑动验证的实现示例
- 利用HTML5中Geolocation获取地理位置调用Google Map API在Google Map上定位Html5 Geolocation获取地理位置信息实例HTML5的Geolocation地理位置定位API使用教程html5指南-4.使用Geolocation实现定位功能html5指南-7.geolocation结合google maps开发一个小的应用使用HTML5 Geolocation实现一个距离追踪器
- Html5游戏开发之乒乓Ping Pong游戏示例(三)html5实现点击弹出图片功能html5 录制mp3音频支持采样率和比特率设置html5表单的required属性使用html5调用摄像头实例代码HTML5页面音频自动播放的实现方式Html5大屏数据可视化开发的实现html实现弹窗的实例HTML5来实现本地文件读取和写入的实现方法HTML 罗盘式时钟的实现HTML5简单实现添加背景音乐的几种方法
- Html5游戏开发之乒乓Ping Pong游戏示例(二)html5实现点击弹出图片功能html5 录制mp3音频支持采样率和比特率设置html5表单的required属性使用html5调用摄像头实例代码HTML5页面音频自动播放的实现方式Html5大屏数据可视化开发的实现html实现弹窗的实例HTML5来实现本地文件读取和写入的实现方法HTML 罗盘式时钟的实现HTML5简单实现添加背景音乐的几种方法
- Html5游戏开发之乒乓Ping Pong游戏示例(一)html5实现点击弹出图片功能html5 录制mp3音频支持采样率和比特率设置html5表单的required属性使用html5调用摄像头实例代码HTML5页面音频自动播放的实现方式Html5大屏数据可视化开发的实现html实现弹窗的实例HTML5来实现本地文件读取和写入的实现方法HTML 罗盘式时钟的实现HTML5简单实现添加背景音乐的几种方法
